## 平成27年度(前期·後期)外来研究員実施報告書

東京大学物性研究所長 殿

所属・職名 横浜国立大学・准教授

氏 名 中津川 博

| 研究題目                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pr <sub>1-x</sub> Sr <sub>x</sub> (Mn <sub>1-y</sub> Fe <sub>y</sub> )O <sub>3</sub> の反強磁性と熱電特性に関する研究 |                |                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------|----------------------------------|
| 利用期間                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 平成 27 年 10 月 1 日~<br>平成 28 年 3 月 31 日                                                                 | 利用研究室<br>・実験室名 | 東京大学物性研究所 徳永研究室・<br>国際超強磁場科学研究施設 |
| 共同研究者<br>氏名・職名・所属                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                       |                |                                  |
| 研究実施経過・成果 ※①使用機器 ②研究方法 ③成果又は経過について書いてください。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                       |                |                                  |
| <ul> <li>研究実施経過・成果 ※①使用機器 ②研究方法 ③成果又は経過について書いてください。</li> <li>① 磁気特性測定システム(MPMS 日本カンタムデザイン)</li> <li>② 一般的な固相反応法を用いて作製した Pr0,9Sr0,1Mn1,xFexO3 (0≦x≦1)の熱電特性と磁性との相関関係を評価した。電気伝導率 ρ とゼーベック係数 S は、四端子法と定常熱流法を用いてそれぞれ測定し、出力因子 S<sup>2</sup>/ρ を評価した。今回、5~350K での磁化率測定を、本申請の支援の下、磁場 H=1T<br/>一定の条件下で MT 測定を行った。</li> <li>③ 電子 dope された CaMnO3 は高い n型の酸化物熱電変換材料として知られており、酸化物熱電変換そジュール作製の為、同程度の p 型の性能を示す酸化物熱電変換材料が求められている。本研究の目的は、ペロフスカイト酸化物の p 型熱電性能に着目し、熱膨張率の差が無視できる pn 型素子の可能性を明らかにすることにある。Fig.1 に示すように、x=0 は室温付近まで強磁性的な磁性秩序が維持されている為、p 型熱電特性を示すものの二重交換相互作用による eg電子の移動が支配的になることから、Fig.5 に示すように 800K 以上で p 型から n 型へ熱電特性が変化している。また、x が増加するに従って電気抵抗率は増加しているが、Fig.5 に示すように 800K 以上で p 型から n 型へ熱電特性が変化している。Fig.4 に示すよう に x が増加するに従って電気抵抗率は増加しているが、Fig.5 に示すようにモデオシうに x が増加するに従って電気抵抗率は増加しているが、Fig.5 に示すようにモデオシうしていないことから高スピン Mn の電子構造が支配的であり、Fig.4 に示すよう に x 6 4 4 4 4 4 4 4 5 4 4 5 4 4 5 4 5 4 5 4</li></ul> |                                                                                                       |                |                                  |
| 研究成果の公表方法 ※予定がある場合にタイトル、雑誌名をお書きください。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                       |                |                                  |
| 平成 28 年 3 月 21 日、応用物理学会春季学術講演会 9.4 熱電材料セッションで"ペロフスカイト酸化物<br>Pr <sub>0.9</sub> Sr <sub>0.1</sub> Mn <sub>1-x</sub> Fe <sub>x</sub> O <sub>3</sub> (0≦x≦1)のp型熱電特性"という題目で口頭発表を行う。<br>知的財産権の取得状況又は取得予定 ※「発明等の名称」「発明考等」「出願人等」をお書きください                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       |                |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                       |                |                                  |

**要望・感想** ※共同利用を行う上での問題点、所への要望・感想等をお書きください。 今後とも4泊5日のマシンタイムをまた頂けると幸いです。





**Fig.4**  $Pr_{0.9}Sr_{0.1}Mn_{1-x}Fe_xO_3$ (0 $\leq x \leq 1$ )の電気抵抗率  $\rho$ 

**Fig.5**  $Pr_{0.9}Sr_{0.1}Mn_{1-x}Fe_xO_3$  (0 $\leq$ x $\leq$ 1) のゼーベック係数S